网址:http://www.nikibi.net
网站:凤凰彩票,凤凰平台登录,凤凰时时彩平台

      NAD (尼克酰胺腺嘌呤二核苷酸) 作为电子传递载体(辅酶)参与众多的氧化还原反应,为广大科研人员所熟知。NAD消耗酶的发现再次引起科研人员对其补救合成途径研究的热情。与哺乳动物中的NAD两步补救合成途径不同,其在陆生植物中是四步反应的Preiss-Handler途径;同时植物中特异性存在多种尼克酸(nicotinate,NA)的衍生物(糖基化,甲基化等)。迄今为止,关于NA衍生物在植物代谢中的分子机制及其生理功能鲜有报道。中国科学院遗传与发育生物学研究所王国栋研究组前期的研究表明,NA的O-位糖基化修饰可能保护植物细胞免受种子萌发过程中NA过度积累所造成的毒害,且NAOGT活性是在十字花科植物进化过程中才逐渐获得,NAOGT活性的获得为植物适应环境提供选择优势(Li et al., Plant Cell, 2015);NA的N-甲基转移酶(NANMT)是植物解毒NA的另外一种形式,NANMT活性的获得可能是促成Preiss-Handler途径在陆生植物基因组得以保留的一个重要原因(Li et al., Plant Physiol., 2017)。在最新的研究工作中,随着女子进入半决赛橄榄球七人组为澳大利亚男,王国栋研究组发现一种新的尼克酸修饰——甲酯化(MeNA),可高效互补NAD从头合成途径突变体(ao-1和qs-1),说明MeNA可以在植物不同组织间长距离运输并参与NAD生物合成。研究组进一步克隆了负责NA甲基化和MeNA去甲基化的基因,利用相关转基因材料,结合稳定同位素标记和化学分析表明,NAD通过NA可逆的甲酯化修饰完成在受胁迫组织和非胁迫组织间的重新分配,进而提高植物对不同胁迫环境的适应性。该成果为进一步研究Preiss-Handler途径如何对陆生植物在进化过程中提供的选择优势奠定基础。相关研究成果发表在Molecular Plant上,王国栋研究组博士吴然然、张凤霞为共同第一作者。该研究得到了国家自然科学基金委、国家重点基础研究发展计划和植物基因组学国家重点实验室的资助。

      相关文章

      腾讯新闻 凤凰资讯-凤凰网 百度新闻 e8彩票平台 baidu 众彩彩票 彩运来